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Deep  learning  techniques  have  been  extensively  used  in computerized  pulmonary  nodule  analysis  in
recent  years.  Many  reported  studies  still utilized  hybrid  methods  for diagnosis,  in which  convolutional
neural  networks  (CNNs)  are  used  only  as  one  part  of  the pipeline,  and  the  whole  system  still  needs
either  traditional  image  processing  modules  or human  intervention  to  obtain  final  results.  In this  paper,
we  introduced  a  fast  and  fully-automated  end-to-end  system  that  can  efficiently  segment  precise  lung
nodule  contours  from  raw  thoracic  CT scans.  Our  proposed  system  has  four  major  modules:  candidate
nodule  detection  with  Faster  regional-CNN  (R-CNN),  candidate  merging,  false  positive  (FP)  reduction
egmentation
onvolutional neural networks
aster regional-CNN
ully convolutional neural network (FCN)

with  CNN,  and  nodule  segmentation  with  customized  fully  convolutional  neural  network  (FCN).  The
entire  system  has no  human  interaction  or database  specific  design.  The  average  runtime  is about  16  s
per  scan  on  a standard  workstation.  The  nodule  detection  accuracy  is  91.4%  and  94.6%  with  an  average
of  1 and 4  false  positives  (FPs)  per scan.  The  average  dice  coefficient  of  nodule  segmentation  compared
to  the groundtruth  is 0.793.

©  2019  Elsevier  Ltd. All  rights  reserved.
. Introduction

Worldwide, lung cancer has been having the leading mortal-
ty rate of cancer deaths in both males and females for decades

ith 1.2 million global deaths a year (Fitzmaurice et al., 2017). Due
o the inconspicuous symptoms, the majority of lung cancer cases
re diagnosed at distant stages with only 4% five-year survival rate
Siegel et al., 2018). Early detection of suspicious pulmonary nod-
les is crucial to improve the life quality of lung cancer patients.

urrently, computed tomography (CT) is considered the best and
ost widely used imaging modality for early detection and analysis

f lung nodules. However, because of the complicated morphologi-
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cal and anatomical appearance of nodules, the nodule identification
would be largely dependent on the skill, experience, and vigor of
the radiologists (Winkels and Cohen, 2018). After identifying the
nodule, precise segmentation is significant for clinical measure-
ments (such as diameter and volume), which objectively provides
repeatability of diagnosis and consistency of image interpretation
(Liu et al., 2018). Therefore, a fast and fully-automated computer
aided detection (CAD) system on nodule detection and segmenta-
tion with limited number of false positives (FPs) will dramatically
decrease the workload of radiologists as well as the cost of treat-
ment.

For nodule detection many published works proposed a two-
stage system, which includes a candidate screening step to rapidly
extract nodule regions from pulmonary parenchyma and remove
other structures, and a false positive (FP) reduction step to
massively eliminate FP candidates from the detected ones until
reaching clinically acceptable performance. Ge  et al. (2005) used
adaptive weighted k-means clustering to segment suspicious can-

didates, and reduced FPs by combing 3D gradient field and ellipsoid
features with a linear discriminant analysis (LDA) classifier. Li et al.
(2008) added a multiscale selective filter to enhance nodule and
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imultaneously suppress normal structures, and then a rule-based
lassifier was used to reduce FPs based on six shape features and
welve intensity features extracted from the enhanced images. Tan
t al. (2011) improved the performance of candidate screening by
ntroducing a maxima of the divergence of the normalized gradient
DNG) to find centers of nodule candidates with a merging stage to
emove duplicates and further reduce the number of FPs. Forty-
ve invariant features, defined on a gauge coordinates system, are
sed to differentiate nodules from large amount of FPs. Finally,

 novel feature-selective classifier based on genetic algorithms
nd artificial neural networks (FD-NEAT) was first implemented
o improve the flexibility and adaptability of a classifier. Its per-
ormance was compared with that of two other classifiers based
n support vector machines (SVMs) and fixed-topology artificial
eural networks (ANNs). Even though these traditional machine

earning algorithms achieved remarkable accuracy in nodule detec-
ion, some disadvantages including but not limited to arduous
uman interventions, slow computation time, and mediocre rep-
esentation capability of hand-crafted features obstruct the further
evelopment of traditional CAD system to deal with the large vari-
tions of lung nodules from real clinical CT scans. Recently, deep
earning techniques in particular convolutional neural networks
CNNs) motivate flurry of researchers to develop powerful and
obust algorithms on pulmonary nodule detection, which outper-
orm many traditional machine learning approaches (Anirudh et al.,
016; Tajbakhsh and Suzuki, 2017; Sun et al., 2017a; Ypsilantis and
ontana, 2016; Fu et al., 2017; Hamidian et al., 2017; Winkels

nd Cohen, 2018; Zhu et al., 2018). Setio et al. (2016) delineated
ulti-view 2D CNNs by taking advantage of nine symmetric planes

f nodule cubes without increasing the network complexity. It is
ed with nodule candidates obtained by three individual candidate
creening algorithms that are exclusively designed for solid, sub-
olid, and large nodules respectively. The best detection accuracy is
chieved by applying a dedicated mix-fusion method. Inspired by
he 3D nature of pulmonary nodules, Huang et al. (2017) exploited a
ingle-scale 3D CNNs to encode much richer and more comprehen-
ive spatial contextual information compared with conventional 2D
NNs. Dou et al. (2017a) significantly boosted the detection accu-
acy through a multi-level 3D CNNs. In order to cover the large
ariations of nodules with different sizes of receptive fields, three
ndependent 3D CNNs were involved to learn discriminative fea-
ures for small, medium, and large size of nodules, respectively. It is

 generic 3D CNNs framework that can in principle transfer to other
pplications to extract targets from variety of complicated mimics.
ou et al. (2017b) proposed a novel two-stage 3D CNN for end-

o-end nodule detection with a 3D FCN based nodule candidates
creening and a 3D hybrid-loss residual learning based FP reduc-
ion. They first tackled the severe imbalance problem of hard and
asy samples by employing an online sample filtering scheme. This
ynamic scheme naturally splits hard and easy samples based on
he loss of each forward propagation of training, so that the training
onvergence can be fastened. Ding et al. (2017) provided a combina-
ion of a 2D Faster R-CNN for the initial nodule candidate detection
nd a 3D CNN for FP reduction. The Faster R-CNN based nodule
etection optimally ensured the sensitivity while maintaining low
umber of FPs. Jin et al. (2018) constructed a 27-layer 3D residual
NNs, which is much deeper and more effective than the tradi-
ional 3D CNNs. A spatial pooling and cropping (SPC) layer ensures
he capability of learning multi-level contextual information using

 single-scale 3D CNNs architecture. Such design overcomes the
estriction of tedious parameter tuning while dealing with model
usion, and drastically accelerates the training and testing pro-

ess. Moreover, an online hard sample selection (OHSS) unlocks
he potential of network to detect extreme nodules with complex

orphological characteristics. However, due to the nature of the
revalent two-stage nodule detection framework, some unignor-
ging and Graphics 74 (2019) 25–36

able drawbacks still occur. First, the candidate screening, which
should ideally detect all the suspicious nodule candidates, deter-
mines the upper-bound sensitivity of the entire CAD system. But
morphological difference of nodules makes it impossible to achieve
the optimal performance based on single or multiple hand-crafted
mathematical models (Murphy et al., 2009; Jacobs et al., 2014;
Setio et al., 2015), and the tedious experiment-based parameter
adjustment restricts the applications onto real clinical trials. More-
over, the suboptimal segmentation of lung parenchyma negatively
impacts the candidate screening especially for juxtapleural nodules
(Dai et al., 2015). Second, because of the serial algorithm structure
with many subcomponents, the long computation time stands out
as another demerit. Therefore, a simpler and more independent
nodule detection framework is urgently desired.

Because of the critical clinical value in nodule segmentation, a
growing numbers of pulmonary nodule segmentation algorithms
have been proposed in literature. They can be roughly categorized
into four types: 1) Threshold based methods (Reeves et al., 2006;
Magalhães Barros Netto et al., 2012; Tachibana and Kido, 2006 Xia
et al., 2016). For instance, Tachibana and Kido (2006) designed
a coarse-to-fine scheme that consists of a rough segmentation
step using multiple fixed thresholds to roughly identify the nodule
regions and a precise segmentation step using a watershed-based
algorithm to remove the unnecessary structures attached to them.
2) Morphology based methods (Kubota et al., 2011; Dehmeshki
et al., 2008; Vijaya Kishore and Satyanarayana, 2013 Lassen et al.,
2015). For example, Dehmeshki et al. (2008) presented an effi-
cient sphericity-oriented region growing algorithm applied on the
fuzzy connectivity mask created by a connectivity region growing
technique with only one single seed point provided by the user.
3) Statistical model based method (Wang et al., 2009; Dong and
Peng, 2014; Tan et al., 2013; Mao  et al., 2018). Tan et al. (2013) uti-
lized a hybrid algorithm combining marker-controlled watershed,
geometric active contours as well as Markov random field (MRF).
Similar to the method Tachibana et al. proposed, they imposed
watershed method to generate an initial surface of nodule, followed
by the refinement of active contours. And MRF  optimally estimates
the texture distribution of ground glass opacity, so that it improves
the segmentation accuracy for this portion. 4) Clustering meth-
ods based on traditional machine learning (Van Ginneken, 2006;
Tuinstra, 2008; Messay et al., 2015). Messay et al. (2015) proposed
a selective regression neural network (RNN) based algorithm with
both fully-automated and semi-automated options. The feature
learning process using RNN can automate the parameter setting for
each nodule based on the learned features. However, the majority
of the aforementioned methods perform well only on specific type
of nodules (e.g. solitary pulmonary nodule) or on relatively small
size of dataset, which cannot satisfy the variety and complexity
of pulmonary nodules. In addition, most of the methods still need
human interventions, which largely undermine the purpose of CAD
systems. Finally, in order to achieve optimal performance, most of
the techniques require massive iterations and parameter tunings,
which to a large extent, slow down the overall computation pro-
cess. Recently, the success of semantic segmentation in computer
vision field based on fully convolutional neural networks (FCNs)
(Long et al., 2015; Wang et al., 2017; Chen et al., 2018; Lekić and
Babić, 2018 Yu et al., 2018) attracts some researchers to concen-
trate on the application of pulmonary nodule segmentation. Wu
et al. (2018) firstly deployed an interpretable and multi-task CNNs
model to segment and classify pulmonary nodules by feeding 3D
patches and achieved the state-of-the-art performance. However,
most of current deep learning based algorithms still rely on several

preprocessing steps such as lung parenchyma segmentation, which
decrease the level of automation.

In this paper, we propose a CNNs based algorithm to automat-
ically detect and segment pulmonary nodules with very limited
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Fig. 1. Top level framework of proposed CNNs

umber of FPs. Comparing with methods using the original nodule
atch only, our method improves the area under the curve (AUC)
alignancy prediction by 4% with the combination of the origi-

al nodule patch, the segmented nodule patch highlighting the
hape, and the gradient of nodule patch highlighting the texture
ith accurate boundary information provided (Sun et al., 2017b).

o our best knowledge, this is one of the first works that exploit
ure 2D CNNs based algorithm for pulmonary nodule segmenta-
ion from the raw CT scan without any manual settings. The output
s the corresponding nodule masks with high overlapping ratio
ompared to radiologists’ markings. This study is the follow up
tudy of our previous researches (Qian et al., 1993; DeVore et al.,
995; Sun et al., 2004; Zhang et al., 2007; Ye et al., 2013; Sun
t al., 2017a,b, 2016, 2017c, 2017d, 2017e). The reason of using 2D
xial slice instead of 3D volume in our system is three-fold. First,

 powerful deep learning model relies on large amount of train-
ng data. However, due to the stressful workload of manual nodule
dentification, the available thoracic CT scans with high quality
roundtruth annotations are still insufficient to train a robust and
iscriminative deep learning network. Since a nodule may  appear in
everal neighboring 2D slices of a single CT scan, using 2D instead
f 3D slices will naturally augment the size of training set with-
ut manual data augmentation process. Second, 3D deep learning
odels will exponentially add computation complexity compare to

D models. Therefore, some models require image down sampling
r cropping (Jin et al., 2018) to compensate the massive memory
onsumption. This requirement, to some extent, restricts the fea-
ibility of 3D models on common workstation with limited GPU
esources. Third, transfer learning (Weiss et al., 2016; Long et al.,
016) can be performed based on some fine-tuned 2D models such
s VGG16 (Simonyan and Zisserman, 2015), ResNet-50, and ResNet-
01 (He et al., 2016), significantly accelerates the convergence of
raining, boosts the performance, and cuts down the computa-
ion complexity. The remaining paper is organized as follows. The
ata and methodologies will be described in Section 2. Section 3
eports the experimental results with qualitative and quantitative
erformance evaluation, execution performance analysis, and com-
arison between our proposed method and some state-of-the-art
pproaches to underline the significance of our study. Conclusions
nd some potential improvements are stated in Section 4.

. Materials and methods
.1. Dataset

Similar to most of aforementioned literatures, we train and
valuate our fully-automated system on a large publicly available
d nodule detection and segmentation system.

dataset, organized by Lung Image Database Consortium image col-
lection (LIDC-IDRI) (Armato et al., 2015, 2011; Clark et al., 2013)
with 1018 scans from seven academic centers and eight medical
imaging companies. The slice thickness of these scans is ranging
from 0.6 mm to 5.0 mm.  For each scan, four experienced radiolo-
gists performed two-phase nodule assessment and recorded the
detailed nodule information such as boundary coordinates, malig-
nancy level etc. into an XML  file. In this data set three types of lesions
are included: non-nodule, small nodule (<3 mm), and large nod-
ule (≥3 mm).  According to some clinical recommendations (Aberle
et al., 2011), we  only consider large nodules (≥3 mm) in our study.
The pre-filtering strategy proposed in the Lung Nodule Analysis
2016 (LUNA16) challenge only selected nodules with the consen-
sus of at least three out of four radiologists with slice thickness
no more than 2.5 mm.  As a consequence, 888 CT scans with 1186
nodules are involved.

2.2. Methodology

The framework of our proposed nodule segmentation algorithm
is shown in Fig. 1. It can be simply divided into four main compo-
nents: 1) 2D Faster R-CNN based candidate detection to rapidly
locate pulmonary nodule patches; 2) merging overlapping candi-
dates by combining 2D patches with close Euclidean distances;
3) traditional three-layer 2D CNN based FP reduction to further
eliminate FPs; and 4) modified FCNs based nodule segmentation to
precisely segment the initial nodule mask. The geometric centers of
detected nodules will guide the system to refine the segmentation
and output the final nodule segmentation result. The more detailed
explanation of each component is provided below.

2.2.1. Preprocessing
In order to reduce memory consumption, we assigned -1000 HU

(air) as lower bound and +3000 HU (bone) as upper bound, then
applied a linear mapping to convert the original signed 16-bit CT
volume scans into 8-bit intensity values in the range of 0-255. This
is the only preprocessing work in our proposed approach.

2.2.2. Faster R-CNN based nodule detection
The Faster R-CNN model evolved from Fast R-CNN (Girshick,

2015), which is mainly composed of a region proposal network
(RPN) to propose potential regions of objects and an object detec-
tion network (ODN) to classify the region proposals from RPN. The

new contribution of Faster R-CNN is that RPN and ODN can share
the same convolutional layers, which enabled a more unified sys-
tem to run at near real-time frame rates on natural images without
performance loss (Ren et al., 2017). Based on our experiments, it is
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Fig. 2. The architecture of propose

ully convertible to be applied on nodule detection after conducting
everal modifications. The network architecture is shown in Fig. 2.

To accelerate training convergence and save computation work-
oad, we reused the weights of first five groups of convolutional and
ooling layers with a total of thirteen consecutive convolutional
Conv) and five pooling layers from a pretrained VGG16 model, and
he calculated feature maps are shared with both RPN and ODN
raining. For RPN, we utilized a small network by sliding a 3 × 3
indow at a time over the shared feature space to convert this fea-

ure map  to a 512-dimension feature vector followed by a ReLU
ayer (Nair and Hinton, 2010). We  implement the aforementioned
mall network by a 3 × 3 convolutional layer. After two  sibling

 × 1 convolutional layers, an RPN regression (rpn reg) layer out-
uts the bounding box coordinates of each proposal, and an RPN
lassification layer (rpn cls)  estimates the probability of the pro-
osal being a nodule. The design of anchors ensures the capability
o parallelly predict multiple nodule proposals at each sliding win-
ow location. Different from common objects in natural images
ith big sizes and elongated shapes, the nodules are with relatively

mall and square boundaries. Therefore, we used a fixed scale ratio
1:1) and removed the other scale ratios in original RPN design, and
mplemented seven anchors with ascending common differences:

 × 4, 6 × 6, 10 × 10, 16 × 16, 24 × 24, 36 × 36, 52 × 52 to fit
he size variations of nodules. Because of the sparse distribution of
odules, we also adopt non-maximum suppression (NMS) based
n the scores of rpn cls with intersection over union (IoU) thresh-
ld of 0.7 between groundtruth and RPN proposals. NMS massively
educes the number of proposals and also potentially improves the
etection accuracy, since high-density proposals may  cause RPN to

dentify many surrounding regions that partially overlapped with
rue nodules (please see Fig. 3 as an example). The learnt proposals
rom RPN are fed into ODN for further classifications.

Taking the proposals predicted by RPN, the ODN is involved to
erve as a binary classifier to determine nodule regions using the
rchitecture of traditional CNNs. A ROI pooling layer is imposed to
ap  each proposal to a smaller feature map  by implementing max

ooling operation of the values in a fixed 7 × 7 sub-window. Then
wo 4096-way fully-connected layers (FC1 and FC2) are conducted

o produce a lower dimension feature vector, followed by two  inde-
endent Softmax layers to output bounding boxes and probability
cores of predicted nodules (box reg and box cls).  In Faster R-CNN,
PN and ODN are mutually finetuned by adopting a pragmatic four-
er R-CNN based nodule detection.

step alternating training procedure (Ren et al., 2017). As such, we
achieved a unified network with sharing convolutional layers for
RPN and ODN and the loss function for a single batch of N images
is defined as follows.

Lt = 1
N

[
1

Nrr

∑

i

Lr

(
ti, t∗

i

)
+ 1

Nrc

∑

i

Lc

(
pi, p∗

i

)

+ 1
Nbr

∑

j

Lr

(
tj, t∗

j

)
+ 1

Nbc

∑

j

Lc

(
pj, p∗

j

)
] (1)

Lr (t, t∗) = R(t − t∗) (2)

Lc (p, p∗) = −log[pp∗ + (1 − p) (1 − p∗)] (3)

where Nrr , Nrc , Nbr , and Nbc are numbers of inputs in rpn reg,  rpn cls,
box reg, box cls layers respectively, Lr and Lc represent loss associ-
ated the regression and classification layers, ti represents the four
coordinates of predicted nodule proposal, t∗

i
is the coordinates of

the corresponding groundtruth nodule, pi and p∗
i

denote the pre-
dicted and true probability of current anchor to be a nodule in RPN.
Similarly, tj , t∗

j
, pj , p∗

j
implicit the same concepts in ODN. Besides,

R is a robust loss function (smooth L1 loss) explained in (Girshick,
2015).

2.2.3. Merging of overlapping nodule candidates
After Faster R-CNN, most nodule candidates can be detected.

However, a single nodule may  appear in several slices, therefore it
may have more than one candidate representing the same nodule
especially for some nodules with blurry edges. Based on some intu-
itive observations, these candidates will lie in close proximity to
each other. Thus, a simple and computation-efficient merging oper-
ation is implemented by recursively combining candidates within
five voxels of each other until no further merge is needed. This
merging procedure ensures that a single nodule is identified within
a single 2D slice rather than multiple slices alongside each other,
dramatically decreases the number of unnecessary detections, and
fastens the processing speed of the following FP reduction since the
base number of candidates are lowered.
2.2.4. CNN based false positive reduction
With the nodule candidates extracted by Faster R-CNN, true

nodule regions are successfully identified with small amount of
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Fig. 3. Comparison of nodule candidate detection with and without non-maximum suppression (NMS) operation. (a) Nodule candidates without NMS  operation. (b) Nodule
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andidates with NMS  operation. (c) and (d) are zoom-in view of the region mark
-CNN  are marked by red solid squares with the classification probability on top of 

.7  are displayed in this example. With NMS  operation, our system successfully de
nterpretation of the references to colour in this figure legend, the reader is referred

Ps. However, the existence of FPs still prohibits the use of CAD
ystem in clinical practice. Considering the requirement of com-
utation time and the advantages of Faster R-CNN component, a
imple 2D CNN based classifier is sufficient to handle FP reduc-
ion task. Based on our previous work (Sun et al., 2017a) with the
ddition of multi-view nodule patches obtained from nine sym-
etrical planes presented in a previous work (Setio et al., 2016),

n individual CNN with three pairs of convolution-pooling layers
nd one fully-connected layer is implemented. The loss is calcu-
ated by using the cross-entropy error, and weights are updated
sing mini-batches of 128 images. Then the testing is incorpo-
ated based on the Faster R-CNN initial candidate detection results.
he kernel size for each convolutional layer is 5 × 5, 3 × 3, and

 × 3 and the numbers of filters are 24, 48, 64, respectively. The
nput image size is 64 × 64 for both training and testing sets.
fter FP reduction step, the occurrence of FPs is largely decreased
hile maintaining a high detection sensitivity. Since the FP reduc-

ion network will be executed after Faster R-CNN initial candidate
etection, different initial candidate FP levels with correspond-

ng sensitivity may  cause variations on the overall performance.
n order to achieve the best performance, we empirically set three
nitial candidate FP levels (small, medium, large) and individually

mploy FP reduction on each FP level. We  quantify the results in
ection 3.
 yellow dashed square in (a) and (b). The predicted nodule candidates by Faster
 Note that only the candidates with classification probability of nodules larger than
a ground glass opacity (GGO) nodule without partially overlapped duplicates (For
e web version of this article).

2.2.5. Modified FCN based nodule segmentation
FP reduction eliminated the most unlikely nodule candidates

detected by Faster R-CNN. Among the remaining candidates, the
100 by 100 patches containing the nodule detection bounding
boxes are created. Compared to FP reduction network that conducts
a single imagewise two-class classification, more precise pixelwise
classification is performed for segmentation purpose. Therefore,
larger receptive field with richer background texture is needed.
The modified deconvolutional neural network (Long et al., 2015)
is used to generate the detailed nodule segmentation contour. In
this experiment, the VGG16 is imposed as the backbone, and the
weights of all the convolutional layers are initiated by ImageNet
VGG16 pretrained model, while the weights of the later deconvo-
lutional layers are randomized. In VGG16, there are five groups of
convolutional layers altogether (Conv1 to Conv5), and each group
contains a few consecutive convolutional layers. The original FCN
used three convolutional layers (Conv3, Conv4 and Conv7) to gener-
ate the segmentation results. Since the lower convolutional layers
have higher resolution, incorporating these layers should help with
segmentation precision. In this study, two  extra rounds of training
are added to FCN training procedure to incorporate the first two
convolutional layers (Conv1 and Conv2) to deconvolutional net-

works as well. The architecture of our modified FCN is shown in
Fig. 4.
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Fig. 4. The architec

To initiate the FCN, the ImageNet VGG16 weights are down-
oaded and a classification FCN is trained based on it. Each
onvolutional layer provides the local neighborhood information
f the image, and each pooling layer down-samples the image by
he stride of 2. To fine tune the VGG16, the third fully connected
ayer (fc8) is removed, and the output node is set to 2 since our
ataset has two subsets: nodule and non-nodule. Then all the fully
onnected layers are converted to convolutional layers, and all the
eights are preserved in the transformed model.

Then the fine-tuned VGG16 weights are used to initiate FCN32 s,
nd an extra deconvolutional layer connected to the last convolu-
ional layer is initialized with random noise attached to the end.
hen we up sample the deconvolutional layer result by 2 to gen-
rate the FCN32 s segmentation mask. The added deconvolutional
ayer and up sampling layer can be considered as a block, after
CN32 s being trained, another block is attached to the end to train
CN16 s. Because there is another up sample layer in FCN16 s com-
ared to FCN32 s, the original deconvolutional results are twice
s large. Different deconvolutional results are up sampled to the
dentical size as the original image, and concatenated together to
enerate the segmentation output. The whole process is repeated

 times so the FCN2s output has the same size and resolution of the
riginal image. All the deconvolutional layers are up sampled at the
ame size and concatenated together. Compared to original FCN8s,
ur model utilizes the lower level convolution results thus yielding
igher resolutions and preserved the details of the nodule. Since
egmentation is indeed a pixel wise classification task, we  still use
ross entropy loss as the loss function during the FCN training.

.2.6. Postprocessing
The final segmentation results are obtained after the fusion of

etected nodule centers and initial segmentation masks to remove
on-nodule segmentations. This fusion operation only selects the
orresponding segmented object with shortest Euclidean distances
etween detected nodule center and object centers in the initial
egmentation mask.

. Results and discussion

.1. Experimental design
For the Faster R-CNN based nodule detection, we take the 888
ltered CT scans with 1186 high confidence pulmonary nodules

rom LUNA16 dataset and retrieve their original annotations with
f our modified FCN.

precise nodule boundary coordinates recorded in XML  format from
LIDC-IDRI. To create the bounding square for each nodule, we  cal-
culate the smallest bounding rectangle and treat the longer side
as the side of the result bounding square and record the four
edge coordinates in groundtruth file. Because of the 2D network
design, a total of 7909 axial nodule slices are generated. Lever-
aging from the ten patient-level subsets by LUNA16, we include
nodule slices of subset0 to subset5 as training, subset6 to subset7
as validation, and subset8 to subset9 as testing. As a consequence,
534 scans with 5040 nodule slices, 178 scans with 1411 nodule
slices, and 176 scans with 1458 nodules slices are assigned to train-
ing, validation, and testing set, respectively. For the training step,
we adapt backpropagation and stochastic gradient descent (SGD)
(LeCun et al., 1989) to train our end-to-end network. The mini-
batch size of images per iteration is set as 2 and the minibatch
size of anchors per image is set as 10. For each image, based on
the number of positive anchors (nodule), we randomly crop equal
number of negative anchors (background) so that the sampled pos-
itive and negative anchors have the ratio of 1:1. Except for the first
five groups of convolutional layers from VGG16, we  randomly ini-
tialize all the other layers by drawing weights from a zero-mean
Gaussian distribution with standard deviation 0.01. The learning
rate is 0.001 for the first 10 epochs, and 0.0001 for the remaining
with the momentum of 0.9 and a weight decay of 0.0005. Based
on the aforementioned settings, the loss is stable after 20 epochs
training. The total training time for Faster R-CNN is about 2.5 h. For
the modified FCN based nodule segmentation, the learning rates for
the five deconvolutional training are set to 10–12, 10–14, 10–16,
10–14, 10–15, respectively. The momentum is set to 0.99, weight
decay is 0.0005, the iteration is set to 50,000 for each round of train-
ing. Besides the initialization round, we  train FCN with five rounds
manner, adding one fully connected layer each time. Each round of
FCN training is about 5 h, and total training time for FCN is about
30 h.

All the training and testing of CNNs are implemented using Ten-
sorflow (Abadi et al., 2015) on a standard PC with a single 6GB
memory GPU GeForce GTX 980Ti.

3.2. Evaluation metrics
To evaluate nodule detection accuracy we calculate the detec-
tion sensitivity and the corresponding average FPs per scan for
every prediction probability level, and the Free Receiver Operating
Characteristic (FROC) is imposed to visualize the sensitivity versus
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Table  1
The system performance and CPM score comparison of the proposed method and other state-of-the-art approaches. Note that “online” means models with online descriptions
available on LUNA16 competition website: https://luna16.grand-challenge.org/Results/, “*” represents models with limited details provided.

Team GPU CNN Dimension CPM

PAtech (PA tech)online Tesla K80 × 4 3D 0.951
JianPeiCAD (weiyixie)online NVIDIA Titan X × 2 3D 0.950
LUNA16FONOVACAD (zxp774747)online NVIDIA M40  × 2 3D 0.947
iFLYTEK-MIG (yinbaocai)* – – 0.941
zhongliu xie (zhongliu.xie)online NVIDIA K80 × 2 3D 0.922
iDST-VC  (chenjx1005)* – – 0.897
qfpxfd  (qfpxfd) (Ding et al., 2017) – 3D 0.891
CASED  (CASED) (Jesson et al., 2017) – 3D 0.887
3DCNN  NDET (lishaxue3)* – 3D 0.882
Aidence  (mjharte)* – – 0.871
junxuan20170516 (chenjx1005)* – 3D 0.865
MEDICAI (bharadwaj)* – 3D 0.862
Ethan20161221 (ethanhwang2012)* – – 0.856
resnet  (QiDou) (Dou et al., 2017b) NVIDIA Titan X × 1 

CCELargeCubeCnn (Intel wuhui)online CPU 

Ours  NVIDIA 980 Ti × 1 
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ig. 5. Number of detected nodule candidates before and after candidate merging
rocess with different cut-off thresholds of prediction probability for all 888 LUNA16
cans.

Ps relationship. A predicted nodule candidate will be counted as a
rue positive (TP) if it stays within five voxels to the real nodule cen-
er. The competition performance metric (CPM) score (Niemeijer
t al., 2011) is calculated by taking the average detection sensitiv-
ty of seven predefined FPs per scan: 0.125, 0.25, 0.5, 1, 2, 4, and
.

With regards to the nodule segmentation, we  evaluate the
egmentation similarity between automated segmentation and
roundtruth mask through the calculation of the dice coefficients
Sørensen, 1948), which is defined by the following equation.

SC = 2TP

2TP + FP + FN
(4)

.3. Nodule detection

After nodule candidate detection by Faster R-CNN, we apply
 merging step to combine the candidates that are geometrically
lose to each other. The number of candidates before and after
he merging process is shown in Fig. 5. The number of candidates
ecrease by 70.9%, 70.9%, 70.7%, and 70.3% at cut-off prediction
robability threshold of 0.2, 0.4, 0.6, and 0.8, respectively, which
erifies the superiority of using the merging operation as a simple
ostprocessing step in 2D nodule candidate detection. The FROC
urve of our Faster R-CNN based nodule candidate detection is
hown in Fig. 6a. When the threshold of prediction probability is set
s 0.5, we achieve the sensitivity of 95.2% with an average of 19.8
Ps per scan, which outperforms the traditional nodule detection

lgorithm in LUNA16 with an overall sensitivity of 94.4% with an
verage of 620.6 FPs per scan. Our proposed merging method mas-
ively reduces the burden of FP reduction task. The FROC curves
fter 2D CNN based FP reduction are shown in Fig. 6b-d by taking
3D 0.839
3D 0.833
2D 0.880

initial candidate FP level of 10 (L10), 15 (L15), 20 (L20) from Faster
R-CNN results. We list the sensitivity at each initial candidate FP
level using our nodule detection method in Table 1 with CPM score
of 0.866, 0.875, and 0.880 for L10, L15, and L20, respectively. The
best CPM is achieved in L20 with sensitivity of 91.4% and 94.6% at an
average of 1 and 4 FPs per scan, respectively. The number of train-
able parameters of Faster R-CNN, FP reduction, and modified FCN
networks are 2.4 × 106, 7.1 × 104, and 1.3 × 108. The 3D U-net-based
architecture in CASED (Jensen et al., 2017), which has identical CPM
value compared to our approach, has approximated 6.6 × 106 learn-
ing parameters. Our Faster R-CNN + CNN model for detection has
about 36% parameters of CASED model. By investigating different
initial candidate FP levels from detecting network, these results
show that a less conservative initial candidate selection threshold
yields stronger performance (better CPM value), when FP reduction
is employed. Moreover, a more progressive initial candidate selec-
tion threshold only performs better sensitivity at smaller FP levels
(less than 0.25 FPs per scan in our case) in FROC curve.

Comparing with the top 15 models under the nodule detection
track in LUNA16 challenge that employed 3D CNNs, our 2D nodule
detection method successfully outperforms some of the 3D meth-
ods (Row 10 to 15 in Table 1) while keeping the computation and
memory usage efficiency. Different from the methods (Row 1, 2,
3, and 5) using multiple powerful GPUs, our 2D model shows the
capability of using cost-efficient GPUs. For instance, compared with
Zhu et al., 2018 that employed a 3D Faster R-CNN network with
3D dual-path blocks and U-net-like encoder-decoder structure to
compactly and effectively exploit features, our light and straightfor-
ward approach has much smaller number of learning parameters,
thus the whole 2D slices that contain the entire natural contextual
information can be fed into the training without considering the
GPU memory limitation. They tried to save memory consumption
by cropping 3D patches with pixel size 96 × 96 × 96 from origi-
nal scans, which may  also add computation burden at the testing
phase.

Nodules that are successfully detected by candidate detec-
tion network but eliminated by FP reduction network are shown
in Fig. 7. About 4% of correctly detected nodules in our testing
set are falsely removed. These nodules present either irregular
shapes or ambiguous boundaries. Bringing more data targeting
these nodule representatives might potentially boost the sensitiv-
ity performance.
3.4. Nodule segmentation

Not considering FPs, the mean and standard deviation of dice
coefficients (DSC) regarding the nodule segmentation using FCN2s,

https://luna16.grand-challenge.org/Results/
https://luna16.grand-challenge.org/Results/
https://luna16.grand-challenge.org/Results/
https://luna16.grand-challenge.org/Results/
https://luna16.grand-challenge.org/Results/
https://luna16.grand-challenge.org/Results/
https://luna16.grand-challenge.org/Results/
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Fig. 6. The FROC curve of our nodule detection results. (a) FROC curve of Faster R-CNN based nodule candidate detection without FP reduction. (b) FROC curve of FP reduction
by  taking initial candidate FP level of 10 in.(a) as initial candidates marked by green square. (c) FROC curve of FP reduction by taking initial candidate FP level of 15 in.(a) as
initial  candidates marked by blue square. (d) FROC curve of FP reduction by taking initial candidate FP level of 20 in.(a) as initial candidates marked by purple square (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

F ashed circles mark the nodule locations. The top row (a to c) are nodules in subset8, and
t  to colour in this figure legend, the reader is referred to the web version of this article).
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Table 2
The mean and standard deviation of segmentation dice coefficients among FCN2s,
FCN4s, and FCN8s.

Mean Std

FCN2s 0.793 0.082
ig. 7. Nodules in the testing set that are eliminated by FP reduction network. Red d
he  bottom row (d to h) are nodules in subset9 (For interpretation of the references

CN4s, and FCN8s are presented in Table 2, which quantitatively
roves that FCN2s with lower level convolution will potentially
ield higher resolution and preserve the boundary information of
he nodule. Therefore, higher DSC is obtained with the comparison
o groundtruth mask. This proves our assumption that using lower

evel convolutional layers can help improve the segmentation accu-
acy. The higher level deconvolutional results provide the rough
odule locations and shape, while the lower level deconvolutional
esults provide the nodule boundary details.
FCN4s 0.723 0.149
FCN8s 0.674 0.172
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Fig. 8. Visualization results of our proposed nodule segmentation system with various anatomical characteristics. The columns 1–3 marked by red rectangle represent three
isolated nodules, the columns 4–6 marked by light blue rectangle denote one juxta-pleural (column 4) and two juxta-vascular (column 5 and 6) nodules, and the columns
7  and 8 marked by light purple rectangle show one subsolid nodule with center excavation and one ground glass opacity (GGO) nodule. The first row represents original
nodule patches after Faster R-CNN detection and FP reduction with predicted bounding boxes marked by solid red squares as well as the classification probabilities in light
blue  background. The second row represents the corresponding annotations by radiologists. The manual segmentations are emphasized by red masks. The third to fifth rows
denote  nodule segmentation results by FCN2s, FCN4s, and FCN8s, respectively. The fully-automated segmentations are emphasized by yellow masks. The white decimals
implicit the dice coefficients for each segmentation compared to groundtruth markings (For interpretation of the references to colour in this figure legend, the reader is
referred to the web  version of this article).

Table 3
Performance of the proposed method and other state-of-the-art approaches.

Methods Nodule amount IoU

Tachibana and Kido (2006) 23 50.7 ± 21.9%
Wang et al. (2009) 64 58%
Messay et al. (2015) 68 63 ± 16%

Kubota et al. (2011)
23 69 ± 18%
82  59 ± 19%

Tan et al. (2013) 23 65%

Lassen et al. (2015)
19 52 ± 7%
40  50 ± 14%

Messay et al. (2015)
66 71.70 ± 19.89%
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Table 4
Dice coefficients on different nodule groups based on clinical characteristics. Note
that  nodules in the testing set are grouped based on their clinical characteristic
scores. The numbers in square brackets represent the number of nodules in the
corresponding group. We average the characteristic scores from four radiologists.

Characteristics Scores

1 2 3 4 5 6

Calcification
– – 0.794 0.817 0.788 0.795
–  – [10] [4] [1] [208]

Sphericity
0.784 0.740 0.823 0.781 0.798 –
[1] [19] [72] [76] [55] –

Spiculation
0.783 0.824 0.779 0.874 0.858 –
[157] [36] [14] [6] [10] –
77 69.23 ± 13.82%
Wang et al. (2017) 493 71.16 ± 12.22%
Ours 223 70.24 ± 12.04%

Table 3 shows the comparisons between our proposal seg-
entation result and other researchers’ results based on the LIDC

ataset. Since these methods use intersection over union (IoU) as
he measurement metric, we report our results based on the same

easurement in this table. Among all the listed approaches, our
ethod achieves high performance on a relatively large amount of

esting dataset.
In clinical practice, nodules have various types of clinical

haracteristics. The capability of segmenting large variety of nod-
les is necessary. Nine nodule characteristics are given in LIDC
roundtruth markings, reflecting nodules’ calcification, malignancy
evel and so on. We  chose four representative characteristics and

eparate our testing set into different groups according to the cor-
esponding characteristic scores. Based on the quantitative results
n Table 4, our segmentation algorithm possesses the robustness of
rocessing various types of nodules with similar performance.
Malignancy
0.737 0.780 0.807 0.812 0.800 –
[14] [62] [71] [43] [33] –

Visual comparisons between groundtruth, FCN2s, FCN4s, and
FCN8s are shown in Fig. 8 by displaying several representa-
tive nodules. Our nodule segmentation algorithm can precisely
segment large variety of nodules with different anatomical char-
acteristics. Due to the complicated boundary pattern, the DSC for
poor-circumscribed (juxta-pleural and juxta-vascular) and fuzzy-
boundary (ground glass opacity) nodules is a little worse than well-
circumscribed nodules. But since the main components of such
nodules are successfully segmented, the quantitative performance
decay will not impact the robustness in terms of visualization.
Because we are conducting an end-to-end nodule segmentation
directly from raw CT scans, the combined dice coefficient including
FPs can reflect the overall performance. The false positives (FPs)
can be involved in both detection and segmentation steps. For the
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Fig. 9. Box plot of execution time for our proposed (a) nodule de

Table 5
The mean and standard deviation of execution time for our proposed nodule detec-
tion and segmentation algorithm.

Mean (secs) Std
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Detection (Faster RCNN + CNN) 15.319 8.126
Segmentation (FCN2s) 0.917 0.835

egmentation algorithm, the FPs can occur when the algorithm
alsely detects other structures (vessels, airway walls, etc.) while
voiding the true nodules, which brings the dice coefficient to zero
n FPs (Type I). For the detection algorithm, the FPs are appar-
ntly added when the algorithm fails to separate FPs from detected
andidates (Type II). Leveraging from our full CAD system (detec-
ion + segmentation), the Type I FPs are eliminated by detection
etwork since the center coordinates far from detected candidates
ill be removed after the postprocessing step illustrated in Section

.2.6. Therefore, only Type II FPs are remained. We  can simply cal-
ulate the combined dice score by considering all positive detected
egions (TPs and FPs). For the given testing set, we choose sensitiv-
ty of 91.4% with 1 FPs per scan in the detection step and feed all
he candidates in the segmentation network, the end-to-end dice
core will be decreased to 0.426 (0.793 if we exclude the Type II
Ps). Therefore, the combined dice coefficient provides the con-
ention to be compared to other end-to-end nodule segmentation
lgorithms.

.5. Execution performance

As for execution perspective, we demonstrate the efficiency of
he proposed method by running our automated nodule segmen-
ation system for all 888 LUNA16 scans. Fig. 9 shows statistical box
lots regarding nodule detection (Faster R-CNN + CNN) and nod-
le segmentation (FCN2s). Note that the execution time is scan
ised, so there are some variations due to the variations of slice
umbers. The mean values and standard deviations are indicated

n Table 5. Our end-to-end fully-automated nodule segmentation
ystem achieves an average of 16 s per scan without any human
nterventions.

. Conclusions

In this paper, we developed a four-step pure CNNs based
ulmonary CAD algorithm on thoracic CT scans, which can auto-
atically and efficiently segment lung nodules with reasonable

mount of FPs. Even though there is still a performance gap com-
ared to some state-of-the-art methods that involved much denser
D convolutional layers with much more complex designs, our

esults and evaluations demonstrated the capability of using pure
D CNNs on a standard workstation to detect and segment pul-
onary nodules with high performance. Such automation and

fficiency significantly facilitate the translation from scientific
tection algorithm and (b) nodule segmentation algorithm.

researches to real applications on the computerized lung nod-
ule segmentation trend. For the future outlook, further evaluation
based on independent testing dataset is desired to perform a more
comprehensive comparison. Besides, for any 2D detection scheme
implemented on volumetric imaging, the model performance is
also critical when being applied across an entire volume. We  will
assess it in the future. Finally, it is attractive to implement more
advanced 2D CNNs architectures (such as generative adversarial
network in Goodfellow et al., 2014) to further boost the perfor-
mance.
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